

The importance of fully-integrated CMOS: Cost-Effective Integrated DC-DC Converters

<u>Hans Meyvaert</u>

Tom Van Breussegem

Hagen Marien

Dr. Mike Wens

Prof. Dr. Michiel Steyaert

Overview

Introduction

- DC-DC converters in CMOS
 - Passives
 - Active devices
 - Control
- Inductive
 - Converter Topologies
 - Converter Components
 - Control Systems
- Capacitive
 - Low Power
 - High Power
 - Exotic Cheap Technologies -> Organic DC-DC Converter

Introduction: Why & What?

- Bridge the Voltage Gap
 - Battery Voltage vs Supply Voltage
 - POL Converter close to load

- Enables
 - Multiple Voltage Domains
 - Voltage Scaling (AVS & DVS)

Need for DC-DC converters as basic building blocks

How DC-DC: SoC vs SiP

- PowerSiP
 - Bondwire interconnect to passives
 - # components vs footprint
 - Larger passives
 - Cost does not scale fully with production volume due to PCB and component cost

How DC-DC: SoC vs SiP

- PowerSoC
 - Very low supply impedance
 - Full decentralized power conversion (powergrid on chip)
 - Many voltage domains
 - Scalable
 - Small footprint
 - Cost scales with production volume

A Trend: (r)evolution

- Integration Paradigm
 - In RF-CMOS it brought us portable, low cost and versatile applications

ightarrow A true technology revolution

- Monolithic Integration of power electronics?
 - Even more compact utilities
 - Less energy losses
 - Longer Battery Lifetime (EEF)
 - → POWER-CMOS will complete the evolution that started with RF-CMOS

Overview

Introduction

• DC-DC converters in CMOS

- Passives
- Active devices
- Control
- Inductive
 - Converter Topologies
 - Converter Components
 - Control Systems
- Capacitive
 - Low Power
 - High Power
 - Exotic Cheap Technologies -> Organic DC-DC Converter

DC-DC in CMOS: Passives

Inductors

- Integration awareness of inductors
- Bond wire inductor
- Metal track inductor

Inductors on-chip:

- Skin-effect -
- Substrate losses

Round conductors & far from substrate/metal

Passives in CMOS

Bondwire inductors:

- Can be combined with C underneath (slots!)
- Low series resistance: ca. 50m Ω /nH @ 100MHz
- Far from substrate
- Good for single-phase & high voltage
- Cannot be scaled well: no multiphase

Passives in CMOS

Metal-track inductors:

- Cannot be combined with C underneath
- High series resistance: ca. 250m Ω /nH @ 1GHz
- Close to substrate
- Good for multiphase & low voltage

Mike Wens Published ESSCIRC 2008 – Edinburgh

DC-DC in CMOS: Passives

• Capacitors

Passives in CMOS

- Capacitors
 - MIM Capacitors
 - Low Density
 - High Quality
 - Voltage Independent Cap
 - MOS Capacitors
 - High Density
 - Improving with Scaling
 - Voltage Dependent Capacitance
 - Non Linear

Top Metal = Metal N Тор Тор Top Plate Bottom Plate = Metal N-1 Top Plate Bottom Plate ME X+1

ME X

- MOM Capacitors
 - Low Density
 - High Quality
 - High voltage

Passives in CMOS

- Capacitance Density
 - Type dependant
 - MOS-cap: ~10nF/mm²
 - MIM-Cap: ~2nF/mm²
 - MOM-Cap: ~0.5nF/mm²
 - Layout dependant
 - MIM-cap:
 - Poor Modeled
 - Little Layout freedom
 - MOS-cap
 - Poor Modeled
 - Lots of Layout freedom
 - Trade off

Cap Density <> Resr

DC-DC in CMOS

Actives

Actives in CMOS

- Only CMOS switches
 - CMOS is good in switching at high frequencies
 - This is necessary since small amount of passives
 - Close Integration with control
 - Adapted waffle layout for low parasitics
- But
 - Small breakdown voltage
 - Standard devices
 - 1-1.2V
 - Fast
 - IO devices
 - 2.5V-3.3V
 - Fast but not as fast as Standard Performance Devices

• Solution:

- Use Switch Stacking
 - or
 - Voltage Domain Stacking

Actives in CMOS

- Switch Stacking
 - Put multiple switches in series to deal with higher voltages
 - Compensate for increase of R_{switch}
 -> Increase W
 - Hard for complex topologies and large # of switches in topology
 - Works perfect for Buck or Boost Cfr. Implementations

Vin = 2*Vbreakdown

- Voltage Domain Stacking
 - Introduce multiple voltage domains
 - Make sure each switch in single domain
 - Take care of Start Up and transient behavior

Control I_{Cfly} Monolithic Integration enables

- High Speed Control
- Compact integrated solution
- Extreme Multiphase
- But impedes
 - Current Measurement
 - Digital Control
 - 100MHz-1GHz switching frequency
 - DSP does not comply with this

Intermezzo: Efficiency Enhancement Factor (EEF)

DC-DC ₁		DC-DC ₂
$P_{out} = 1 \text{ W} \qquad k_{lin} = k_{SW} = 0.8$		$P_{out} = 1 \text{ W} \qquad k_{lin} = k_{SW} = 0.5$
$\eta_{lin} = 80 \%$ $\eta_{SW} = 85 \%$		$\eta_{lin} = 50 \% \qquad \eta_{SW} = 55 \%$
$\implies \Delta \eta = \eta_{SW} - \eta_{lin} = 5 \%$		$\implies \Delta \eta = \eta_{SW} - \eta_{lin} = 5 \%$
$P_{in_lin} = 1.25 \text{ W} \qquad P_{in_SW} = 1.18 \text{ W}$ $\implies \Delta P_{in} = P_{in_lin} - P_{in_SW} = 0.07 \text{ W}$		$P_{in_lin} = 2 W \qquad P_{in_SW} = 1.82 W$ $\implies \Delta P_{in} = P_{in_lin} - P_{in_SW} = 0.18 W$
$EEF = \frac{\Delta P_{in}}{P_{in_lin}} \bigg _{k_{lin} = k_{SW}} = 5.6 \%$		$EEF = \frac{\Delta P_{in}}{P_{in_lin}} \bigg _{k_{lin} = k_{SW}} = 9 \%$
$EEF = 1 - \frac{\eta_{lin}}{\eta_{SW}}\Big _{k_{lin} = k_{SW}}$		

Overview

- Introduction
- DC-DC converters in CMOS
 - Passives
 - Active devices
 - Control

• Inductive

- Converter Topologies
- Converter Components
- Control Systems
- Capacitive
 - Low Power
 - High Power
 - Exotic Cheap Technologies -> Organic DC-DC Converter

Inductive Converters: Control

PWM vs PFM:

Inductive Converters: Control

Constant On/Off-Time (COOT):

- Higher eff. vs PWM
- No current sensing
- Mostly digital
- Fast trasient response
- Fixed voltage ratio
- Load regulation dependant on the ripple

Inductive Converters: Control <u>Semi-Constant On/Off-Time (SCOOT):</u>

Published ESSCIRC 2007 – Munich

- Output Power 800mW
- Efficiency Enhancement Factor +21%
- Power density 213mW/mm²

Mike Wens Published ECCE 2009 – San-José

Overview

- Introduction
- DC-DC converters in CMOS
 - Passives
 - Active devices
 - Control
- Inductive
 - Converter Topologies
 - Converter Components
 - Control Systems
- Capacitive
 - Low Power
 - High Power
 - Exotic Cheap Technologies -> Organic DC-DC Converter

- Use nothing but
 - Solid state switches
 - Capacitors
 - Density and Quality increase by scaling

- 2-Phase operation
 - Topology corresponds with VCR
 - VCR:1/2 -> 1 cap || VCR:4/5 ->3 caps

- Up-Conversion
 - The voltage Doubler design
 - Multiphase 16 phase
 - Analog Loop
 - Ripple < 0.5%
 - Efficiency up to 82%

Pout(mW)

Tom Van Breussegem Published VLSI 2009 – Kyoto

- Down Conversion
 - Point Of Load Converter
 - 3.9V-3.05V Input
 - 1.52-1.3V Output
 - 150mW Max Pout
 - 77% Efficiency
 - Multiphase Hysteretic Control

Tom Van Breussegem Published ESSCIRC 2010 – Sevilla

- High Voltage Up-Conversion
 - The 10-stage High Voltage Dickson
 - 300mW
 - 70V output 12V Input
 - High Voltage Technology
 - Efficiency 86% per stage

Tom Van Breussegem Published ECCE 2009 – San Jose

- Organic DC-DC
 - No CMOS but cheap
 - 'Plastic'-technology
 - Only PMOS
 - Cap-type Converter
 - 3-stage Dickson
 - 18V Input
 60V Output

Hagen Marien Published ESSCIRC 2010 – Sevilla

Conclusion

- POWER-CMOS is the logic evolution of RF-CMOS
 - Continue the development of high performing fully-integrated DC-DC converters to set a new milestone in integrated circuits
- Cost-effective Bulk CMOS is able to deliver attractive DC-DC converter specifications
 - Go multiphase
 - Go digital control
- Inductive converters: main issue is inductor quality (and ESR)
- Capacitive converters: quest for higher densities (attention to ESR)
- Use EEF as benchmark to validate performance compared to linear regulator

Acknowledgements

• NXP

- Henk-Jan Bergveld
- Patrick Smeets
- Gerard Villar Picque
- Maurice Meier
- Leo Warmerdam
- IWT
- Micas Power Cluster
 - Mike Wens
 - Tom Van Breussegem
 - Hagen Marien
 - Piet Callemeyn
- More info

www.esat.kuleuven.be/micas/powercluster